2D perovskite films found to resemble a sandwich
Australian researchers have demonstrated that the two-dimensional (2D) films used in some perovskite solar cells closely resemble a sandwich — with two layers of the same type (the bread) surrounding one central, contrasting layer (the filling).
Perovskite is an exciting material at the forefront of solar energy research and design. Previously, scientists thought 2D perovskite films had a ‘gradient’ structure, in which certain components were found deep in the material, with other complementary elements only located nearer to the surface, like topping on a cracker.
The latest research — led by members of the ARC Centre of Excellence in Exciton Science based at the University of Melbourne, with collaborators at CSIRO and Shandong University — has been published in Journal of Materials Chemistry C.
The sandwich layout encourages excitons — quasiparticles important for converting sunlight to electricity — to move from the central layer to both surfaces of the film, while free carriers transport charge for collection by electrodes, resulting in more efficient solar energy generation when incorporated into devices.
“A real problem has been understanding what the structure of these 2D perovskite solar cells really is,” said corresponding author Professor Ken Ghiggino, from Exciton Science.
“There’s been quite a lot of controversy in the literature. The advance that we’ve achieved is to find out what the real structure of these films is and how they work in a solar cell.”
2D perovskite devices are of particular interest due to their superior stability and durability relative to ‘3D’ perovskite cells. Prototype 2D devices, developed by the researchers using infrastructure and expertise at CSIRO, have demonstrated 13% efficiency.
With greater fundamental understanding of the structure, the researchers will now attempt to increase device efficiency by changing the thickness of the layers within the perovskite ‘sandwich’.
In addition to solar cells, improved 2D perovskite films have important applications in light-emitting diodes (LEDs) and photodetectors, such as video imaging, optical communications, biomedical imaging, security, night vision, gas sensing and motion detection.
“This is the first time a sandwich structure has been proposed versus the conventional gradient distribution model,” said lead author Dr Fei Zheng, also from Exciton Science. “We think this discovery will help design and device optimisation for higher performance of the 2D cells and LEDs.”
Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletter and bimonthly magazine.
Originally published here.
Battery-like computer memory keeps working in extreme heat
The material transports oxygen ions rather than electrons, creating heat-resistant voltages for...
Producing non-toxic and efficient solar cells
Researchers have developed a new design principle that makes the large-scale production of...
Researchers unveil fast-charging lithium-sulfur battery
Researchers have developed ultrafast-charging lithium-sulfur (Li-S) batteries that could soon...