Computational model enhances battery safety


By Adam Malecek, UW–Madison
Wednesday, 16 April, 2025

Computational model enhances battery safety

Fast-charging lithium-ion batteries are ubiquitous, powering everything from cell phones and laptops to electric vehicles. They’re also notorious for overheating or catching fire.

Now, with a ground-breaking computational model, a University of Wisconsin-Madison mechanical engineer has gained new understanding of a phenomenon that causes lithium-ion batteries to fail.

Developed by Weiyu Li, an assistant professor of mechanical engineering at UW-Madison, the model explains lithium plating, in which fast charging triggers metallic lithium to build up on the surface of a battery’s anode, causing the battery to degrade faster or catch fire.

This knowledge could lead to fast-charging lithium-ion batteries that are safer and longer-lasting.

The mechanisms that trigger lithium plating, until now, have not been well understood. With her model, Li studied lithium plating on a graphite anode in a lithium-ion battery. The model revealed how the complex interplay between ion transport and electrochemical reactions drives lithium plating. She detailed her results in a paper published in the journal ACS Energy Letters.

“Using this model, I was able to establish relationships between key factors, such as operating conditions and material properties, and the onset of lithium plating,” Li said. “From these results, I created a diagram that provides physics-based guidance on strategies to mitigate plating. The diagram makes these findings very accessible, and researchers can harness the results without needing to perform any additional simulations.”

Researchers can use Li’s results to design not only the best battery materials, but, importantly, charging protocols that extend battery life.

“This physics-based guidance is valuable because it enables us to determine the optimal way to adjust the current densities during charging, based on the state of charge and the material properties, to avoid lithium plating,” Li said.

Previous research on lithium plating has mainly focused on extreme cases. Notably, Li’s model provides a way to investigate the onset of lithium plating over a much broader range of conditions, enabling a more comprehensive picture of the phenomenon.

Li plans to further develop her model to incorporate mechanical factors, such as stress generation, to explore their impact on lithium plating.

This is a modified version of a news item published by the University of Wisconsin-Madison. The original version of the news item can be accessed here.

Image credit: iStock.com/Uladzimir Zuyeu

Related News

Novel method to extend lifecycle of Li-ion batteries

Researchers have uncovered a hidden surface degradation mechanism in the cathodes of lithium-ion...

Sensor could help prevent Li-ion battery fires

Researchers have developed new technology to detect dangerous gas leaks in lithium-ion batteries,...

Study sheds light on energy density of solid-state lithium batteries

Researchers have found that an all-solid-state lithium metal battery achieves an energy density...


  • All content Copyright © 2025 Westwick-Farrow Pty Ltd