Moving beyond the 80-year-old solar cell equation
Physicists from Swansea University and Åbo Akademi University have made a significant breakthrough in solar cell technology by developing a new analytical model that improves the understanding and efficiency of thin-film photovoltaic (PV) devices.
For nearly eight decades, the so-called Shockley diode equation has explained how current flows through solar cells; the electrical current that powers up homes or charges battery banks. However, the new study challenges this traditional understanding for a specific class of next-generation solar cells, namely thin-film solar cells.
These thin-film solar cells, made of flexible, low-cost materials, have had limited efficiency due to factors that the existing analytical models couldn’t fully explain.
The new study sheds light on how these solar cells achieve optimal efficiency. It reveals a critical balance between collecting the electricity generated by light and minimising losses due to recombination, where electrical charges cancel each other out.
“Our findings provide key insights into the mechanisms driving and limiting charge collection, and ultimately the power-conversion efficiency, in low-mobility PV devices,” said the lead author, Dr Oskar Sandberg of Åbo Akademi University, Finland.
New model captures the missing piece
Previous analytical models for these solar cells had a blind spot: “injected carriers” — charges entering the device from the contacts. These carriers significantly impact recombination and limited efficiency.
“The traditional models just weren’t capturing the whole picture, especially for these thin-film cells with low-mobility semiconductors,” said the principal investigator, Associate Professor Ardalan Armin of Swansea University. “Our new study addresses this gap by introducing a new diode equation specifically tailored to account for these crucial injected carriers and their recombination with those photo-generated.
“The recombination between injected charges and photo-generated ones is not a huge problem in traditional solar cells such as silicon PV which is hundreds of times thicker than next generation thin film PV such as organic solar cells,” Sandberg added.
Armin said: “One of the brightest theoretical physicists of all times, Wolfgang Pauli, once said, ‘God made the bulk; the surface was the work of the devil’. As thin-film solar cells have much bigger interfacial regions per bulk than traditional silicon, no wonder why they get affected more drastically by ‘the work of the devil’ — that is recombination of precious photo-generated charges with injected ones near the interface!”
Impact on future solar cell development
This new model offers a new framework for designing more efficient thin-film solar cells and photodetectors, optimising existing devices and analysing material properties. It can also aid in training machines used for device optimisation, marking a significant step forward in the development of next-generation thin-film solar cells.
The research findings have been published in PRX Energy.
Wearable generator powers electronics by body movements
Researchers have developed a device that can generate electricity from vibrations or even small...
Ion speed record holds potential for faster battery charging
Scientists have broken a speed record using nanoscience that could lead to new advances in...
CSIRO opens facility to bring flexible solar tech to market
CSIRO has launched its state-of-the-art Printed Photovoltaic Facility in south-east Melbourne, to...