How do you prevent fracture in solid-state batteries?
Researchers from the Georgia Institute of Technology are looking into a new battery design that uses all solid materials that could offer higher safety and more energy density than traditional batteries.
Solid-state batteries — a new battery design that uses all solid components — have gained attention in recent years because of their potential to hold much more energy while simultaneously avoiding the safety challenges of their liquid-based counterparts. As noted by Matthew McDowell, an assistant professor at Georgia Tech, “Solid-state batteries could be safer than lithium-ion batteries and potentially hold more energy, which would be ideal for electric vehicles and even electric aircraft.”
But building a long-lasting solid-state battery is easier said than done, as the Georgia Tech researchers discovered when they used X-ray computed tomography (CT) to visualise in real time how cracks form near the edges of the interfaces between materials in the batteries. Their findings, published in the journal ACS Energy Letters, could help improve the energy storage devices.
In a typical lithium-ion battery, energy is released during the transfer of lithium ions between two electrodes — a cathode and an anode — through a liquid electrolyte. For the study, the research team built a solid-state battery in which a solid ceramic disc was sandwiched between two pieces of solid lithium. The ceramic disc replaced the typical liquid electrolyte.
“Figuring out how to make these solid pieces fit together and behave well over long periods of time is the challenge,” Asst Prof McDowell said. “We’re working on how to engineer these interfaces between these solid pieces to make them last as long as possible.”
In collaboration with Assistant Professor Christopher Saldana, an expert in X-ray imaging, the researchers placed the battery under an X-ray microscope and charged and discharged it, looking for physical changes indicative of degradation. Over the course of several days, a web-like pattern of cracks formed throughout the disc, occurring alongside the growth of an interphase layer between the lithium metal and solid electrolyte. The researchers found that this fracture during cycling causes resistance to the flow of ions.
“These are unwanted chemical reactions that occur at the interfaces,” Asst Prof McDowell said. “People have generally assumed that these chemical reactions are the cause of the degradation of the cell. But what we learned by doing this imaging is that in this particular material, it’s not the chemical reactions themselves that are bad — they don’t affect the performance of the battery. What’s bad is that the cell fractures, and that destroys the performance of the cell.”
Solving the fracturing problem could be one of the first steps to unlocking the potential of solid-state batteries, including their high energy density. The deterioration observed is likely to affect other types of solid-state batteries, the researchers noted, so the findings could lead to the design of more durable interfaces.
“In normal lithium-ion batteries, the materials we use define how much energy we can store,” Asst Prof McDowell said. “Pure lithium can hold the most, but it doesn’t work well with liquid electrolyte. But if you could use solid lithium with a solid electrolyte, that would be the Holy Grail of energy density.”
Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletter and bimonthly magazine.
Wearable generator powers electronics by body movements
Researchers have developed a device that can generate electricity from vibrations or even small...
Ion speed record holds potential for faster battery charging
Scientists have broken a speed record using nanoscience that could lead to new advances in...
CSIRO opens facility to bring flexible solar tech to market
CSIRO has launched its state-of-the-art Printed Photovoltaic Facility in south-east Melbourne, to...