Wirelessly powering multiple wearables from a single source
Researchers from the National University of Singapore (NUS) have successfully demonstrated the use of the human body as a medium for transmitting and harvesting energy to power wearable technology, with their results published in the journal Nature Electronics.
Advancements in wearable technology are reshaping the way we live, work and play, and also how health care is delivered and received — but a major pain point facing the use of these wearables is the issue of keeping these devices properly and conveniently powered. As the number of wearables one uses increases, the need to charge multiple batteries rises in tandem, consuming huge amounts of electricity. Many users find it cumbersome to charge numerous devices every day, and inconvenient service disruptions occur when batteries run out.
A research team, led by Associate Professor Jerald Yoo from the Department of Electrical and Computer Engineering and The N.1 Institute for Health at NUS, has developed a solution to these problems. Their technology enables a single device, such as a mobile phone placed in the pocket, to wirelessly power other wearable devices on a user’s body, using the human body as a medium for power transmission. The team’s novel system has an added advantage — it can harvest unused energy from electronics in a typical home or office environment to power the wearables.
To extend battery life and sustain fully autonomous — yet wireless — operations of wearable devices, power transmission and energy harvesting approaches are required. However, conventional approaches for powering up body area wearables are limited by the distance that power can be transmitted, the ‘path’ the energy can travel without facing obstacles and the stability of energy movement. As such, none of the current methods have been able to provide sustainable power to wearables placed around the entire human body.
The NUS team decided to turn the tables on these limitations by designing a receiver and transmitter system that uses the very obstacle in wireless powering — the human body — as a medium for power transmission and energy harvesting. Each receiver and transmitter contains a chip that is used as a springboard to extend coverage over the entire body.
A user just needs to place the transmitter on a single power source, such as the smart watch on a user’s wrist, while multiple receivers can be placed anywhere on the person’s body. The system then harnesses energy from the source to power multiple wearables on the user’s body via a process termed as body-coupled power transmission. In this way, the user will only need to charge one device, and the rest of the gadgets that are worn can simultaneously be powered up from that single source. The team’s experiments showed that their system allows a single power source that is fully charged to power up to 10 wearable devices on the body, for a duration of over 10 hours.
As a complementary source of power, the team also looked into harvesting energy from the environment. Their research found that typical office and home environments have parasitic electromagnetic (EM) waves that people are exposed to all the time — for instance, from a running laptop. The team’s novel receiver scavenges the EM waves from the ambient environment and, through a process referred to as body-coupled powering, the human body is able to harvest this energy to power the wearable devices, regardless of their locations around the body.
“Our unique system has the potential to omit the need for batteries, thereby enabling manufacturers to miniaturise the gadgets while reducing production cost significantly,” Assoc Prof Yoo said. “More excitingly, without the constraints of batteries, our development can enable next-generation wearable applications, such as ECG patches, gaming accessories and remote diagnostics.”
The NUS team will continue to enhance the powering efficiency of their transmitter/receiver system, with hopes that any given power-transmitting device, be it a user’s mobile phone or smart watch, can in future satisfy the network power demands of all other wearables on the body, thus enabling a longer battery lifetime.
Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletter and bimonthly magazine.
New cathode material for cheaper, efficient EV batteries
Researchers at the Georgia Institute of Technology have seen potential reductions in the use of...
Solving the energy crisis: 5 battery technologies you should know about
The Battery Research and Innovation Hub at Deakin University's Institute for Frontier...
MIT engineers design tiny batteries for powering cell-sized robots
These zinc-air batteries, smaller than a grain of sand, could help miniscule robots sense and...