Boiling better bubbles to improve advanced electronics
There’s only one way to boil water, right? Apparently not. Researchers say they’ve discovered new ways of inducing and controlling boiling bubble formation that could make advanced electronics work better and last longer.
Oregon State University engineers say the concept could benefit industry in two ways: by boiling water and creating steam more readily, like in a boiler or clothing iron, or by helping an electronics device to release heat more readily while working at a cooler temperature.
“One of the key limitations for electronic devices is the heat they generate, and something that helps dissipate that heat will help them operate at faster speeds and prevent failure,” said Chih-hung Chang, a professor of electrical engineering in the OSU College of Engineering.
“The more bubbles you can generate, the more cooling you can achieve.
“On the other hand, if you want to create steam at a lower surface temperature, this approach should be very useful in boilers and improve their efficiency. We’ve already shown that it can be done on large surfaces and should be able to scale up in size to commercial use.”
The new approach is based on the use of piezoelectric inkjet printing to create hydrophobic polymer ‘dots’ on a substrate and then deposit a hydrophilic zinc oxide nanostructure on top of that. The zinc oxide nanostructure only grows in the area without dots. By controlling both the hydrophobic and hydrophilic structure of the material, bubble formation can be precisely controlled and manipulated for the desired goal.
This technology allows researchers to control both boiling and condensation processes, as well as spatial bubble nucleation sites, bubble onset and departure frequency, heat transfer coefficient and critical heat flux for the first time.
In electronics, engineers say this technology may have applications with some types of solar energy, advanced lasers, radars and power electronics — anywhere it’s necessary to dissipate high heat levels.
In industry, a significant possibility is more efficient operation of the steam boilers used to produce electricity in large generating facilities.
The research has been published in Scientific Reports and the researchers have filed a patent application.
Creating dual waveguides with femtosecond laser writing
Researchers have used femtosecond laser writing to create passive and active dual waveguides, to...
Gold structures boost spin wave transfer to prevent overheating
Researchers have successfully enhanced spin wave transfer efficiency for heatless information...
Enhanced wavelength conversion for quantum information transfer
Researchers have achieved significant bandwidth in frequency conversion, paving the way for more...