Wearable energy storage


Tuesday, 13 October, 2015

ARC Centre of Excellence for Electromaterials Science (ACES) researchers have created new fibre structures and used traditional knitting and braiding techniques to introduce the ability to monitor human movement using wearable structures, and even to store the energy required to power such a function.

A knitted textile based on the polymeric composite fibres, produced at the Australian National Fabrication Facility, is highly sensitive, stable and able to detect a wide range of human movement. The team demonstrated a working device with remote sensing capabilities using a knee sleeve prototype of the fabric that ‘talks’ to a commercial wireless receiver.

These fibres are not only stretchable but also conduct electricity. This combination of properties allows the fibres to respond to body movement. For energy storage, the materials that make up a battery have been braided into appropriate arrangements to deliver energy storage capabilities.

ACES Director Gordon Wallace said an interdisciplinary approach to the research was crucial to the team’s success.

“These advances are made possible by the combination of skills that ARC Centres of Excellence bring together to tackle challenging areas,” he said.

“We are able to take fundamental advances in materials science and engineering and to realise wearable structures for use in sports training and rehabilitation applications.”

A paper detailing the work, ‘Knitted Strain Sensor Textiles of Highly Conductive All Polymeric Fibers’, was published in Applied Materials and Interfaces.

Related News

A lighter, smarter magnetoreceptive electronic skin

Researchers have developed an innovative e-skin that facilitates a new level of interaction...

Single transistor used to implement neuromorphic behaviour

Researchers have demonstrated that a single transistor can mimic neural and synaptic behaviours,...

Novel fabrication technique for flexible electronics

Researchers have harnessed nature's intrinsic hierarchical fractal structures to improve the...


  • All content Copyright © 2025 Westwick-Farrow Pty Ltd