Silicon photonic MEMS developed for semiconductor manufacturing
A team of researchers led by the University of Sydney’s Associate Professor Niels Quack has developed technology to combine optics and micro-electromechanical systems (MEMS) in a microchip, paving the way for the creation of devices like micro-3D cameras and gas sensors for precision air quality measurement, including their use in mobile phones. Published in Nature: Microsystems and NanoEngineering, the new microfabrication process builds on silicon photonics and uses semiconductor manufacturing techniques to enable a new, more energy-efficient generation of devices for fibre-optical communications, sensors and future quantum computers.
Quack said that the photonic MEMS are unique in that they are compact, consume little power, are fast, support a range of optical carrier signals and have low optical loss. Quack said that this is the first time that nano-electromechanical actuators have been integrated in a standard silicon photonics technology platform.
“It is an important step towards mature large-scale, reliable photonic circuits with integrated MEMS. This technology is being prepared for high-volume production, with potential applications in 3D imaging for autonomous vehicles or new photonic-assisted computing. Current similar technologies consume a lot of power and occupy a large area on-chip. They also have high optical losses. This makes the integration of a large number of components on a single chip challenging,” Quack said.
The researchers’ silicon photonic MEMS technology overcomes these shortcomings and provides a route for efficient scaling of photonic integrated circuits. “The technology will advance knowledge in the field of micro- and nanofabrication, photonics and semiconductors, with a wide range of applications. These include beam steering for LIDAR 3D sensing in autonomous vehicles, programmable photonic chips or information processing in quantum photonics,” Quack said.
3D semiconductor chip alignment boosts performance
Researchers have developed an ultra-precise method to align 3D semiconductor chips using lasers...
Researchers achieve 8 W output from optical parametric oscillator
Researchers have demonstrated a total output power of 8 W from a high-power mid-infrared cadmium...
"Dualtronic" chip for integrated electronics and photonics
Cornell researchers have developed a dual-sided chip known as a "dualtronic" chip that...