Electronic skin for prosthetics and robotics detects pressure
Scientists at UNIST have developed a stretchable electronic skin, closely modelled after human skin, that can detect not just pressure but also what direction it’s coming from.
The study on the advance, which could have applications for prosthetics and robotics, appears in the journal ACS Nano.
Hyunhyub Ko and colleagues explain that electronic skins are flexible, film-like devices designed to detect pressure, read brain activity, monitor heart rate or perform other functions. To boost sensitivity to touch, some of them mimic microstructures found in beetles and dragonflies, for example, but none reported so far can sense the direction of stress. This is the kind of information that can tell our bodies a lot about the shape and texture of an object and how to hold it. Ko’s team decided to work on an electronic skin based on the structure of our own so it could ‘feel’ in three dimensions.
The researchers designed a wearable artificial skin made out of tiny domes that interlock and deform when poked or even when air is blown across it. It could sense the location, intensity and direction of pokes, airflows and vibrations. The scientists conclude that their advance could potentially be used for prosthetic limbs, robotic skins and rehabilitation devices.
3D semiconductor chip alignment boosts performance
Researchers have developed an ultra-precise method to align 3D semiconductor chips using lasers...
Researchers achieve 8 W output from optical parametric oscillator
Researchers have demonstrated a total output power of 8 W from a high-power mid-infrared cadmium...
"Dualtronic" chip for integrated electronics and photonics
Cornell researchers have developed a dual-sided chip known as a "dualtronic" chip that...