Researchers develop programmable photonic processor
Researchers from the Universitat Politècnica de València (UPV) and the company iPRONICS have designed a chip for the telecommunications sector, data centres and infrastructure associated with artificial intelligence (AI) computing systems. It is a universal, programmable and multifunctional photonic chip that will benefit 5G communications, data centres, artificial intelligence, satellites and autonomous driving, among other applications.
The development of this chip is the main result of the European project UMWP-Chip, led by researcher José Capmany and funded by an ERC Advanced Grant from the European Research Council. The work was published in the journal Nature Communications.
The chip allows on-demand programming and interconnecting wireless and photonic segments of communication networks, avoiding the generation of bottlenecks that can limit the available capacity and bandwidth. “The chip can implement the 12 basic functionalities required by these systems and can be programmed on demand, thus increasing the efficiency of the circuit,” Capmany said.
According to Capmany, applications such as 5G or autonomous cars require a higher frequency, making it necessary to reduce the size of the antennas or associated circuits. In this case, the researchers from UPV managed to make the converter behind the antenna, an interface chip, as tiny and compact as possible and ready to support current and expected future frequency bands. The chip has already been integrated into an iPRONICS product, the Smartlight, and Vodafone reportedly has used it in testing.
“For us, the development of this chip is a crucial step because it has allowed the validation of our developments applied to a growing problem, the efficient management of data flows in data centres and networks for artificial intelligence computing systems. Our next goal is to scale the chip to meet the needs of this market segment,” said Daniel Pérez-López, co-founder and CTO of iPRONICS.
Zero-gravity tech could enable circuit repairs in space
Researchers have developed a special ink and 3D printer that can function in zero gravity.
Electron microscopy reveals colours of outermost electron layer
Researchers have used atomic-resolution secondary electron (SE) imaging to capture the atomic...
Theory reveals the shape of a single photon
A new theory that explains how light and matter interact at the quantum level has enabled...