See-through transistors
Engineers at Oregon State University have created what is claimed to be the world's first transparent transistor, a see-through electronics component that could open the door to many new products.
The advance has been reported in a professional journal, Applied Physics Letters, and a patent has been applied for.
The university is already consulting with major electronics companies about the findings and their potential applications.
The discovery "is a significant development in the context of transparent electronics", the scientists said in their publication, but added that it's too early to tell what applications may evolve.
"This is a significant new advance in basic electronics and material science," said John Wager, a professor of electrical and computer engineering at OSU.
"There's no doubt it will open the door to some interesting new products and businesses, but we're not sure what they all might be.
"It's a little bit like lasers when they were first developed in the 1960s - people at first thought they were an interesting novelty, but no one was quite sure what they could be used for," he said.
"Later on, lasers became the foundation of dozens of products and multibillion dollar industries. Right now we're just beginning to think about what you could do with a transistor you can see through."
The transparent transistor is made from a common compound that also happens to filter out ultraviolet light that many people might associate with preventing sunburn on their nose - zinc oxide.
But that's part of the strength of the new findings, researchers say. The basis of a potential new industry is a compound that's cheap, safe and easy to work with, a good electrical conductor, transparent, can be deposited in thin layers at low temperatures and is environmentally benign.
The findings are the result of several years of graduate research undertaken by Randy Hoffman, Ben Norris and other coworkers at OSU, which is developing one of the world's leading programs in transparent electronics.
The transistors might improve the quality of liquid crystal displays, which are a $10 billion to $15 billion industry, making the displays more clear and bright.
Electronic devices might be built into window glass or the windscreen of a vehicle, allowing a range of new functions or the transmission of visual information.
Many electronic devices such as flat panel displays have glass that now serves no electronic purpose, but could accommodate new circuits or functions. There should eventually be a range of applications in consumer electronics, transportation, business and even the military, Wager said.
Transparent materials that conduct electricity have been around since the 1940s, Wager said, and have found their way into many applications - flat panel displays, solar cells, car windscreens that can defrost themselves.
But the advent of transparent transistors, he said, opens up the much broader potential of electronic devices that require control, logic, switching and the other transistor functions that are essential to modern information systems.
The new transistors, Wager said, are 'n-type' semiconductors, which use basic electron transport and move quickly and efficiently compared to 'p-type' products.
The OSU research team is continuing its study of this and other compounds that could function as transparent transistors, and different device designs. The university is employing a multidisciplinary approach to this research using chemists, physicists and engineers, to help anticipate problems and also produce findings that could quickly be translated into usable products by private industry.
3D semiconductor chip alignment boosts performance
Researchers have developed an ultra-precise method to align 3D semiconductor chips using lasers...
Researchers achieve 8 W output from optical parametric oscillator
Researchers have demonstrated a total output power of 8 W from a high-power mid-infrared cadmium...
"Dualtronic" chip for integrated electronics and photonics
Cornell researchers have developed a dual-sided chip known as a "dualtronic" chip that...